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Abstract--Knowledge of the temperature at the interface between a hot liquid spreading over a cold solid 
substrate is important in determining the nature and extent of any freezing of the spreading liquid and/or 
melting of the substrate. In this paper, a simple model is studied to assess the influence of convection on 
the spatial and temporal variation of the interface temperature. New solutions are determined by both 
analytical and approximate numerical techniques. The theoretical and numerical results are compared in 
the case of slug flow and shown to be in good agreement Shear flow and axisymmetric flow are also 

considered. ~) 1997 Elsevier Science Ltd. 

1. INTRODUCTION 

Heat transfer between two media involving liquid-- 
solid phase transitions is important in both nature and 
industry. Natural situations include ice formation in 
rivers, melting of icebergs and lava flows from 
volcanoes. Industrial areas of interest include casting, 
welding, hot liquid jets for drilling and the design of 
heat sinks in power generating systems and in the 
nuclear power industry. In this last example, the oper- 
ators are required to demonstrate that adequate safety 
margins exist even under severe accident conditions. 
This means that the physical processes involved in 
extreme conditions are sufficiently understood that 
corrective actions can be implemented effectively. 

The problem motivating the work in this paper 
is an extreme hypothetical situation in a gas-cooled 
reactor, where it is supposed that the shutdown sys- 
tems have failed to arrest some event that has led to 
the fuel in a particular channel to overheat, causing 
the entire fuel inventory of that channel to melt and 
pour onto the steel floor below. This molten fuel 
material would spread over the floor in a matter of 
seconds and freeze into a solidified mass. On a much 
longer time-scale, the solidified fuel would release its 
nuclear decay heat, partly to the gaseous environment 
(by radiative heat transfer) and partly to the steel floor 
(by conduction). The issue of industrial interest is the 
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nature and extent of any floor melting, either during 
the initial spreading of the molten fuel or later during 
the release of decay heat. 

In considering the possibility of melting of the floor 
due to the release of decay heat, the extent of spreading 
of the molten material is a key factor. If the material 
were to be released rapidly and to spread extensively 
over the floor, it would form only a thin layer. This 
would give a weak heat source unable to melt the floor. 
Similarly if the arrival rate of the molten material were 
so low that the fluid was broken into droplets as it fell 
from the fuel channel, these would be dispersed over 
a wide area by the gas flows, and again the heat source 
would be weak. The only case of industrial interest is 
the intermediate regime of moderate flow rates, where 
the extent of spreading is limited and the heat source 
may not be insignificant. It is the understanding of 
this regime that forms the focus of this paper. In 
particular, we consider the factors controlling the con- 
tact temperature at the interface between the spread- 
ing puddle and the base. Early melting could lead to 
the incoming fluid mixing with melted base material, 
thus enhancing the erosion of the base. 

Many studies have been made of a liquid flow over 
a cold base. One particular problem that has received 
much attention is the freezing of a warm liquid in 
steady planar flow over a cold surface, where it is 
normally assumed that 

(I) the thickness of the deposited layer is 
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NOMENCLATURE 

~i~,/;., (~, ~i2,/;2, (~ coefficients [see equation 
(26)] 

k thermal conductivity 
P e  = Uat/~c~ Peclet number 
p, q shear and slip values for shear flow 
Q volume flow rate 
r, z cylindrical polar coordinates 
R scaled radial coordinate 
s dimensionless penetration coordinate 

scaled dimensionless penetration 
coordinate 

S similarity function 
t time 
t' integration variable 
T temperature 
To ambient temperature of the lower 

medium 
T,~ ambient temperature of the upper 

medium 
u velocity component 
U characteristic speed of the leading edge 

of the spreading fluid 

V dimensionless contact temperature 
x, z Cartesian coordinates. 

Greek symbols 
constant 

7,/~ coefficients [see equation (26)] 
thermal diffusivity 

). = (k2 . /k l  )x//(~cj/~c2) dimensionless group 
q = t' + (2- ' -  1)2 compound variable 
0 dimensionless temperature. 

Subscripts 
0 ambient condition in the lower 

medium 
1, 2 upper and lower medium quantities, 

respectively 
fp melting point of UO2 
mp melting point of steel 

ambient condition in the upper 
medium 
dimensionless quantity. 

sufficiently small that heat conduction normal 
to the substrate dominates (compared with con- 
duction parallel to the interface) ; 

(2) the convective heat flux from the liquid to the 
solid is a known function of the streamwise 
coordinate ; 

(3) the physical properties of the liquid and solid 
are constant ; 

(4) the initial temperature of the cold surface is 
uniform and constant ; 

(5) there exists a definite interface between the 
liquid and solid. 

Libby and Chen [1] (referred to as LC) found ana- 
lytical short- and long-time solutions and calculated 
a complete numerical solution using Goodman's  inte- 
gral method [2]. For short times the classical con- 
duction solution prevails, while at large times a 
limiting thickness of deposit is approached. Lapadula 
and Mueller [3] (referred to as LM) developed a sim- 
ple approximate analytical solution using a vari- 
ational method. Their numerical results were indis- 
tinguishable from LC's, but their differential equation 
governing the deposit thickness as a function of time 
had a simpler form than LC's. Beaubouef and Chap- 
man [4] found a numerical solution using finite- 
differences. Their results for the steady-state con- 
vective heat transfer rates showed good agreement 
with those of LM. Savino and Siegel [5] used an ana- 
lytical iteration technique to find successive approxi- 
mations for the deposit thickness and temperature 
profile, T,4ae analytical expressions were of simple form 

and there was good agreement with the numerical and 
approximate solutions of LC, LM and, Beaubouef 
and Chapman. Elmas [6] found a closed-form ana- 
lytical solution for the deposit thickness, which 
accommodated time-dependent boundary conditions. 
Siegel and Savino [7] considered a more general prob- 
lem where a frozen layer forms from a liquid flow over 
a flat plate cooled below the freezing temperature of 
the liquid by a coolant flowing along the other side of 
the plate. They compared three analytical procedures 
and presented numerical results graphically, con- 
cluding that a method developed in their paper gave 
a rapidly converging means of solving the problem. 

Cheung and Epstein [8] reviewed all this work, 
pointing out that if the wall is either kept isothermal 
or convectively cooled below there is a continuous 
supply of heat sinks at the wall to cool the flow, 
allowing a constant crust thickness. In many practical 
situations, including the reactor scenario, the wall is 
neither cooled in this way nor kept isothermal and, in 
consequence, conduction within the wall needs to be 
considered. 

Epstein [9] examined this conjugate problem in the 
case when solidification is the only phase-change 
occurring. Motivated by applications to lava flows, 
Huppert [ 10] analysed the melting and/or freezing that 
can occur when hot fluid flows turbulently over a cold 
solid base. The resulting equations were solved using 
an explicit finite-difference scheme. The main con- 
clusion was that whenever a hot, turbulent flow is 
confined by a solid surface and the freezing tern- 
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perature of the fluid exceeds the initial temperature of 
the solid, the initial response is the formation of a chill 
(i.e. solidification occurs first). In addition, provided 
that the turbulent flow is sufficiently deep and that 
the melting temperature of the solid is less than the 
temperature of the turbulent flow, the energy flow 
reverses: there is melting back of the chill and the 
substrate eventually melts. 

In Huppert's problem the molecular conductivities 
of the fluid and solid base are taken to be equal, but 
the eddy diffusivity of the turbulently convecting melt 
is somewhat larger. In the reactor case the solid base 
has a molecular diffusivity which is an order of mag- 
nitude larger than that of the impacting material, but 
the eddy diffusivity of the material in turbulent flow 
may be comparable or even dominate. Thus, in prac- 
tice there will be a range of diffusivity contrasts to 
consider depending upon the strength of the turbu- 
lence. Throughout this work the diffusivity is taken 
to be greater in the solid (in contrast to Huppert's 
problem). We consider the early times after a front of 
fluid passes over part of the base and determine the 
contact temperature between the fluid and base. By 
comparing the contact temperature with the fusion 
temperatures of the materials, we can then determine 
what phase-changes, if any, are initiated. 

The problem considered here bears similarities to 
the classical Leveque problem for laminar flow heat 
transfer on a flat plate [11]. The Leveque problem 
involves a material at some ambient uniform tem- 
perature flowing with a linear shear profile over a 
substrate at a different uniform temperature. There 
is a self-similar solution for the temperature in the 
developing thermal boundary layer in terms of an 
incomplete Gamma function. Yen and Tien [12] 
assumed the same flow field in determining the tem- 
perature distribution in a fluid flowing over a melting 
plate. They assumed quasi-steady conditions, 
although account was taken of the movement of the 
interface due to melting. Using the Leveque solution 
as the first approximation in an analytical iterative 
process, they found that the melting resulted in a 
decrease in the heat transfer coefficient at the surface. 
Once again the solution was time independent. In the 
current work it is the initiation of phase-changes that 
is to be studied and thus the work is time dependent. 
This means that in general an analytical solution is 
not possible. 

2. TWO-DIMENSIONAL FLOW 

To investigate the behaviour of the contact tem- 
perature soon after a hot liquid passes over a solid 
base, a series of model problems is considered. 
Throughout the work it is assumed that phase-change 
does not occur, though by analysing the contact tem- 
perature an estimate is obtained for phase-changes to 
be initiated. Two-dimensional flow fields are con- 
sidered first, and then the axisymmetric case. 

2.1. Specification of  the problem 
To fix ideas, consider two semi-infinite media hav- 

ing different thermal properties, one medium initially 
occupying x < 0, z > 0 at temperature T~, the other 
x > 0, z < 0 at temperature To. At time t = 0, the 
upper medium starts moving in the positive x-direc- 
tion with speed u. The geometry is shown in Fig. 1. 

The temperature in the upper medium, Tr, satisfies 

(~2T, ~2TI" ~ ~T, OT, 
~-~\ ax ~ + az 2 / = ~ +u  ~7 (1) 

while the temperature in the lower medium, T:, sat- 
isfies 

K~(O2T2 ~2T2~ OT: 
o k a x  2 + O z 2 / =  a~-" (2) 

Assuming good thermal contact at the interface 
between the two materials gives continuity of tem- 
perature and heat flux, so that the boundary con- 
ditions are 

T, = T2, k l ~ = k 2 ~  o n z = 0  (3) 

where k denotes thermal conductivity, assumed 
constant. In addition, the incoming fluid is all at its 
initial temperature, so that 

Y~ = T~, a t x = 0 .  (4) 

It is convenient to introduce dimensionless space, 
time, velocity and temperature variables, 2, 2, [, fi, and 
0 by using ~/U,  K~/U 2 and U as length, time and 
velocity scales and by measuring temperature relative 
to To in units of T~ - To. Here U is the characteristic 
speed of the leading edge of the spreading fluid. 
Assuming that the fluid is moving sufficiently fast, i.e. 
the Peclet number Pe = UZt/x, is large, convection 
will dominate conduction, except in a thin boundary 
layer (2 = O(Pe-~2)) where conduction in the 2-direc- 
tion will balance convection. (Furthermore, if 
.f = O(Pe ~,.2) or 2 - ~ Z  = O(Pe ~.'2) axial conduction 
is also important, but consideration of these small 
regions lies outside the scope of the present analysis). 
Likewise, provided that k~/k2= O(1) as P e ~ ,  

~t  

T~ 

x = u t  

~lTlzz = TI~ + uT~  

TI=T2, Z. 
rq Oz = k2 0z . X  

ez2T2zz = T2t 

~2.2 ---~ T o  ~ z---~ - o o  

Fig. 1. Schematic representation of the problem. 
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transverse conduction will dominate longitudinal con- 
duction in the substrate. Thus, in the limit Pe ~ oo, 
the problem reduces to 

0201 001 +~001 
ae 2 Of -if2 2 < a i  2 > 0  (5) 

~c2 0202 6~02 
- e < 0 (6) 

subject to the boundary conditions 

01 ~ I ,Z"-+ (30,02 ----~ 0, Z---)" --O0 (7) 

01 = l ,  o~" ~" 0 (8) 

kl 001 (?02 
0, = 0 2 =  V(2, t), k2 02 - (32' e = 0  (9) 

where V (2, t') is the unknown dimensionless contact 
temperature. 

2.2. Slug flow 
The simplest velocity distribution featuring a mov- 

ing front is when u is uniform, u = U, say (so that 
ti = 1). This introduces the necessary convection with- 
out over-complicating the problem. In particular, ana- 
lytical solutions for the temperature profiles in both 
materials exist in this case. 

To find the solution, a double Laplace transform 
with respect to i and 2 is taken. The region 0 < 2 < oc 
over which the transform is taken actually extends 
beyond the physical extent of the fluid. However, the 
point of view is adopted that the method is applied 
purely formally and the solution is verified a posteriori. 
Jaeger [13] was one of the first to demonstrate the 
utility of such an approach in his work on unsteady 
conduction in two-dimensions. Omitting the straight- 
forward detail, the solution satisfying the equations 
and boundary conditions of the original problem is 

01 (2,~, t ) =  err [ 2 ~ 2  ] 

2 1---22-1 1 
+ ] exp LqTj  arctan [] (~xt~ - 1)1 

exp l_ j 

[~, t' - 2 dt' 
xerfc  2 ~ ]  ~3,'2 (10) 

02(2, Lt)  = x/2 [ erfc " 

4 < i  ( l l )  

where t /=  t ' +  (2 2 .  1)2 and 2 = kl/k  2 x~zz/X]. 
The contact temperature, which is given by 

2 f l / i  
V(2, ~ = ~ a r c t a n ~ k ~  - \ , /z)  

is cons tan t  on  a t r a j ec to r y  2 = c~i, whe re  c~ is a cons tan t  
(0 ~< c~ ~< l ) .  I n  pa r t i cu l a r ,  the con tac t  t e m p e r a t u r e  is 
u n i t y  on  2 = 0 (i.e. c~ = O) and  is zero  on 2 = i (i.e. 
c~ = 1). So if the dimensionless freezing temperature 
of the fluid is between 0 and 1 solidification will occur 
and similarly, if the dimensionless melting point of the 
base lies in this range, melting of the base will occur. 

Figure 2 shows the dimensionless contact tem- 
perature against 2/i  for a range of values of 2. It can 
be seen that the contact temperature decreases as the 
distance from 2 = 0 increases. The fluid near 2 = 0, 
which has only recently come into contact with the 
cold base, has been subject to only a small amount 
of cooling, resulting in little temperature change. In 
contrast, the fluid near the spreading front has been 
under the cooling influence of the base for some time 
and thus has been cooled substantially. This effect is 
most pronounced for the larger values of 2 since the 
conductivity of the base relative to that of the fluid is 
high in this case. 

This problem can be solved approximately using 
Goodman's integral method, an approach that more 
readily accommodates general velocity profiles than 
the transform technique. We define dimensionless 
penetration coordinates sj and s2 in the upper and 
lower materials, respectively, such that for 2 > Sl and 
2 < s2 the materials are at their respective ambient 
temperatures. The heat balance equations result from 
integrating equations (5) and (6) from z" = 0 to s~ 
and s2, respectively. Assuming quadratic temperature 
profiles 

01(~,2,t)-- 1 - ( l -V)  l -  , 

02(2,2,t) = v l -  (13) 

the heat balance integrals in each region and the heat 
flux condition at the interface give three equations for 
the three unknowns s, (2, ~, s2 (2, t) and V (2, ~, 

0.8- 

0.6- 

0.4- ' , ,  -. 

0,2-  

0,0 
0.0 0.1 0,2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Fig. 2. Contact temperature vs 2/~, in the cases 2 = l, 3 and 
10. 
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k l s 2 ( l -  V)+k2s  , V =  O, s 2 ~ ( g 5 2 )  = 6 K2 V 
El 

S 1 ~ - [ - ~ l ~  [ s , ( ] - V ) ] = 6 ( 1 - - V ) .  (14) 

Rescaling & and & so that 

k, 
s2 = k~S2 and ,~1 = sl (15) 

and eliminating V (2, t) gives 

6('2 -- ,~, ) = ' ,  (2'2 -- ,~l ) ( ~  ~t- ~ ) ' 1  -- '2 ( ~  -}- ~ ) $ 2  

(16) 

6 ~ Og, ~g2 
)~-2 (d2--g,) = $ 5 ~ -  -1-,~2($2 --2dl)~-~- (17) 

subject to 

,~, (o, h = 4 ( i ,  ~ = ~C< o) = o. 

The simplest way of  solving the above equations is to 
utilize the fact that they admit a similarity solution, 
namely 

= = (]8) 

Of wider application, however, is the method of  
characteristics and it is this we choose to employ. The 
following differential relationships hold along charac- 
teristics, 

0 = S, (2~ 2 - -  ~, )dg, - g2 dd2 - 6(d2 - d, ) d i  

d2 
a l o n g ~  = 1 (19) 

6 
0 = £2 d£, + d2 (d2 - 2£, ) dd2 - )~2 (d2 - g, ) di 

d2 
a l o n g ~ =  0. (20) 

Approximating by first-order finite differences gives a 
simple numerical scheme for finding the solution. The 
initial conditions are d, = s2 = 0 and the boundary 
conditions are ~, = 0 on .f = 0 and d2 = 0 on 2 = i. 
There are singularities at time i = 0 and at 2 = 0, 
2 = i, so these conditions cannot be used directly in 
the numerical scheme. However,  it is straightforward 
to show from using (18) in (16) and (17) that 

,¢, ~ ~ ,  g2 ~ - - ~ x / 6 ( t - - - f ) ,  2 ~ [  (21) 

1 

d, ~ . ~ / ~ ,  ~ 2 ~ - ~ x / ~ ,  0 < 2 < < i  (22) 

which can be used to avoid the singularities. 
Once ~ and d2 are known at each time step, the 

dimensionless contact temperature, V, follows from 
rearranging the first equation of  (14), 

lo l 
08 • - ~ I 1E,4 

I--- IE-5 
\ I . . . . . .  1E-6 

v 0,)i:: ::Y'>' . . . .  

0.0 , , , , " 1  
0.0 0.002 0.004 0.006 0.008 0.01 

Fig. 3. Contact temperature for a range of time steps, in the 
case )~ = 3. 

k, S 2 S2 
V -- -- (23) 

klS2 -k2s1 .~2 --SI 

Figure 3 shows the dimensionless contact temperature 
from (]2) together with the results from the finite- 
difference scheme for a range of time steps. The 
approximate numerical solution agrees well with the 
exact answer, provided a sufficiently small time step 
is used. In the results presented, the solutions were 
initiated at 10 -8 , using (21), and the smallest time step 
used w a s  l 0  - 6 .  

2.3. Shear f low 
Taking a linear shear velocity profile u = p z + q  

where q ¢ 0 and p are constants, gives a more realistic 
flow over a solid surface. Since the key interest is in 
the contact temperature, it is the flow in the vicinity 
of  the interface that is most important.  The linear 
shear velocity gives a flow field that models a bound- 
ary-layer velocity distribution near this interface. 

The use of  the transform technique becomes tech- 
nically complex in this case and so only the heat bal- 
ance method is employed. We use the same technique 
and temperature profiles as before, but with U = q, 
and obtain 

0 = 6, - ~  +/ ; ,  +g ,  (24) 

8 8 8 8 

where 

a2 = s, $2 [4(2s2 -- il ) q- ?s, (3s2 -- 2s11] 

/;2 = -- S 2 d2 (4 + 7 d, ) 

6 

A- 

37 -3 
(2 = - 77 s, -- 3dz [8(d2 - d ,  ) + 7g, (3~2 - 4g, )] 

A- 
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1.0 

0.8 k 

0.6 

0.2 ~ ~ ,  
0.0 ,, 

0.0 0"~2 010~ OmO~ 0"~8 Old~ 

Fig. 4. Contact temperature for a range of values 7 with 
2 = 3, at/ '  = 0.01. 

p K )  
= u  

7 q2 '  

/i = 8 (g2-g , )+yd , (3~2-2d~)  (26) 
8ff2 - ~ , )  

The differential relationships for g, and g2 along the 
characteristics are 

d2 
0 = 6, d.~ +/~,dg2+d~ d[ a l o n g ~  = 0 (27) 

d2 
0 = d, 2 d~ q-/)2 ds2 q-c2 dt along ~ = / i .  (28) 

These are solved in a similar way to the uniform- 
velocity problem. In this case, however, the second 
set of  characteristics have to be determined with the 
solution (since they are no longer lines of  constant 
slope). 

Figure 4 shows the dimensionless contact tem- 
perature for a range of  values of  the parameter y. For  
fixed q and K,, this is equivalent to a range of  values 
o f p  and thus the figure shows the effect of  the shear 
velocity on the results. As the shear increases (y 
increasing), the flow increases, and thus the contact 
temperature increases. 7 = 0 corresponds the no-shear 
case, solved in the previous section. It can be seen that 
there is little effect on the contact temperature until 3' 
reaches about 10 in the example with 2 = 3. In general 
the effect of  the shear is most marked in the middle, 
away from the end effects of the leading front and the 
point of  initiation of the flow. 

3. AXISYMMETRIC FLOW 

In many situations, including the reactor scenario, 
the flow will not  be two-dimensional, but may be 
spreading out from a source axisymmetrically. With 
a constant volume flow rate per unit length of  Q m 2 
s-% there is a radial velocity u ,  of  Q/2nr, and, in the 
large-Peclet-number limit, the dimensionless tem- 
perature in the upper medium satisfies 

8201 801 Q 8ol 
8~ 2 - ~ i  + 2 n ~ f  8f (29) 

whilst that in the lower medium satisfies equation (6), 
as before. Here # and ~ denote dimensional cylindrical 
polar coordinates and variables have been non- 
dimensionalised as before. Introducing R = ~z~,#2/Q, 
transforms the equations to 

8:0, 80, 80, 
5 > 0: 8g 2 8i + 8R (30) 

• < 0  K2_8202 802 
K, 8y 2 = 8~-" (31) 

which have the same form as the two-dimensional 
case, the boundary conditions being unchanged. In 
particular the dimensionless contact temperature is 

V(f, t') = - arctan < ~ - 1 , i < . 
7"[" (;.  ~/'C 1 /g" 

(32) 

Thus the results for the axisymmetric flows can be 
obtained from those of  the two-dimensional solutions 
by a simple transformation. This means that the 
results are qualitatively the same as those given in 
Section 2.2 (and Section 2.3). In particular the effects 
of  the parameters 2 (and 7) will be the same. 

4. DISCUSSION OF THE RESULTS 

The parameter 2 has the approximate value 3 for 
the case of  UO2 on steel. Typically the steel base is 
initially about  500 K and the UO2 has little superheat 
with a temperature of  around 3200 K. In this case 
0 = ( T -  500)/2700. Thus the melting points of  UO2 
and steel correspond to Of 0 = 0.97 and 0rap = 0.48, 
respectively. 

For  the constant velocity case, Fig. 2 suggests that 
there would be initiation of  a crust of UO2 along all 
the interface, apart  from a very small port ion near 
x = 0. In addition the initiation of  melting of  the steel 
is predicted from x = 0 along about  1/10th of  the 
distance covered by the flow. Thus if the flow front 
had travelled 0.5 m, this predicts melting of  the steel 
to about  5 cm from the source with a UOz crust over 
all, but a few millimetres. F rom Fig. 4, increasing the 
shear of  the flow would have little effect upon the 
formation of  the UO2 crust, bu t  would increase the 
distance along which melting of  the base occurs. For  
7 = 100 the length over which melting occurs is 
approximately double that for no shear. 

Increasing the superheat of  the UO2, so that the 
initial temperature is say 4000 K, gives 
0 = ( T - 5 0 0 ) / 3 5 0 0 ,  0fp=0.75 and 0rap=0.37. This 
slightly increases the area near x = 0 without crust 
formation, and approximately doubles the area where 
melting occurs. However,  it is likely that the UO2 
would have other substances from the reactor core 
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mixed in it ( for  example graphite or steel cladding), 
and the resulting eutectic would have a lower melting 
point, of  about 2500 K. In this case with 80 K of  
superheat, 0 = ( T -  500)/2080, 0fp = 0.96 and 
0~p = 0.63. The area of  crust formation is little chan- 
ged, whilst the area over which melting occurs is 
reduced by over half. F rom Fig. 4, the latter effect is 
more marked for larger shear velocities (higher 7)- 

In general the results indicate that a crust forms in 
the UO_~ fluid over all except a small area of  the inter- 
face and that melting of  the steel base occurs over a 
larger area. The size of  this latter area depends upon 
the melting temperature and the initial superheat of  
the fluid flow, while the area of crust formation is 
relatively unaffected by these parameters. 

Many previous models of  the early development 
in contact problems have simplistically assumed two 
stationary media. The work of  this paper shows that 
the motion of  the fluid can significantly effect the 
detailed spatial and temporal  variation of  the contact 
temperature, with the consequent implications on the 
possible breakthrough of the solid substrate. 
However, the particular model for the fluid flow 
assumed in this paper (slug or shear flow) is also 
simplistic, and more realistic regimes need to be stud- 
ied. Moreover,  local analysis would need to be carried 
out for _f = O(Pe ~;z) and , f - f i [  = O(Pe I/2) where 

axial temperature gradients are as important  as trans- 
verse gradients. 

In the past, further progress has been achieved by 
restricting attention to the effects of  phase change on 
developed flows. The current work has considered a 
complementary problem involving a developing flow 
field whilst ignoring phase-change effects. The next 
step is to incorporate phase changes into the develop- 
ing flow problem, i.e. the formation of  a freezing layer 
adjacent to the substrate and/or  melting of  the sub- 
strate itself. These effects add considerably to the com- 
plexity of the problem, requiring consideration of per- 
turbations to the velocity field and of  mixing 

processes. Such issues will be addressed in future 
work. 
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